skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wyper, P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Coronal pseudostreamer flux systems have a specific magnetic configuration that influences the morphology and evolution of coronal mass ejections (CMEs) from these regions. Here we continue the analysis of the Wyper et al. magnetohydrodynamic simulation of a CME eruption from an idealized pseudostreamer configuration through the construction of synthetic remote-sensing and in situ observational signatures. We examine the pre-eruption and eruption signatures in extreme ultraviolet and white light from the low corona through the extended solar atmosphere. We calculate synthetic observations corresponding to several Parker Solar Probe–like trajectories at ∼10Rto highlight the fine-scale structure of the CME eruption in synthetic WISPR imagery and the differences between the in situ plasma and field signatures of flank and central CME-encounter trajectories. Finally, we conclude with a discussion of several aspects of our simulation results in the context of interpretation and analysis of current and future Parker Solar Probe data. 
    more » « less
    Free, publicly-accessible full text available March 19, 2026
  2. Abstract This study presents observations of a large pseudostreamer solar eruption and, in particular, the post-eruption relaxation phase, as captured by Metis, on board the Solar Orbiter, on 2022 October 12, during its perihelion passage. Utilizing total-brightness data, we observe the outward propagation of helical features up to 3 solar radii along a radial column that appears to correspond to the stalk of the pseudostreamer. The helical structures persisted for more than 3 hr following a jet-like coronal mass ejection associated with a polar crown prominence eruption. A notable trend is revealed: the inclination of these features decreases as their polar angle and height increase. Additionally, we measured their helix pitch. Despite the 2 minute time cadence limiting direct correspondence among filamentary structures in consecutive frames, we find that the Metis helical structure may be interpreted as a consequence of twist (nonlinear torsional Alfvén waves) and plasma liberated by interchange reconnection. A comparison was performed between the helix parameters as outlined by fine-scale outflow features and those obtained from synthetic white-light images derived from the high-resolution magnetohydrodynamics simulation of interchange reconnection in a pseudostreamer topology by P. F. Wyper et al. A remarkable similarity between the simulation-derived images and the observations was found. We conjecture that these Metis observations may represent the upper ends of the spatial and energy scales of the interchange reconnection process that has been proposed recently as the origin of the Alfvénic solar wind. 
    more » « less
    Free, publicly-accessible full text available March 26, 2026
  3. null (Ed.)